Integral
Parsial
Andaikan U= ( X ) dan V = ( x )
Maka Dx [ u (x ).v (x)]
= u (x).v1(x) + v (x).u1(x)
ʃ Dx [u(x).v(x)] =ʃ
u(x).v1(x) + ʃ v(x).u1 (x)
u(x).v(x)= ʃ u(x). v1(x)
+ v(x).u1(x)
ʃ u(x).v1(x)
= u(x).v(x) - ʃ v(x).u1(x)
dv = v1(x) u = diturunkan
du = u1(x) v = diintegralkan
ʃ u(x) dv = u(x). v(x)
- ʃ v(x)du
ʃ u dv = u.v - ʃ v du
contoh :
1.
ʃ x/v sin x/ dv dx
penyelesaian:
u = x
·
du/ dx = 1
·
Du = dx
Dv = sin x dx
Dv/dx= sin x
V = ʃ sin x dx
V= - cos x
= ʃ u dv =
u.v - ʃ v du
= ʃ u dv = x (- cos x ) - ʃ ( - cos x ) dx
= - x cos x + sin x + c
2. ʃ
x cos x dx
penyelesaian:
u = x
du = dx
dv= cos x dx
v= sin x
ʃ u dv = u.v - ʃ v du
= x sin x - ʃ sin x dx
= x sin x + cos x + c
Pengintegralan parsial untuk integral tentu :
ʃba u dv = u.v ]ba - ʃba
v du
contoh
:
1. ʃ1e
In x dx
penyelesaian:
u = In x
du/dx = 1/x
du = 1/x dx
dv = dx
v = x
ʃe1 In x dx = x In x │e1
- ʃe1 x 1/x dx
= [ ( e In e) – ( 1 In 1 )] - ʃe1
dx
=[ e In e – (1 In 1 ) ] - [x│e1]
= [ e In e – e ] – [ 1 In 1- 1]
= [e (1) – e ] – [ 1.0.-1]
= 0- (-1) = 1
Integral parsial berulang
Contoh
ʃ x2/0 sin x/dx dx
u = x2 du/dx= 2x
du = 2x dx
dx = sin x
v = - cos x
ʃ x2 sin x = x2 9 – cos x) - ʃ
- cos x. 2x dx
= -
x2 cos x + 2 ʃ cos x xdx
= -
x2 cos x + 2ʃ x cos x dx
= -
x2 cos x + 2 ( x sin x + cos x)
= -
x2 cos x + 2 x sin x + 2 cos x + c
Integral
Trigonometri
ʃ cos (ax + b) = 1/a sin (ax +b)
ʃ cos ( 5x+3) = 1/5 sin ( 5x +3)
Ada
5 bentuk trignometri:
1. ʃ
sinn x dx dan ʃ cosn x dx
2. ʃ
sinn x cosn xdx
3. ʃ
tann x dx dan ʃ cotn xdx
4. ʃ
tanmx secn xdx dan ʃ cotm x cscn x
dx
5. ʃ
sin mx cos nx dx, ʃ sin mx sin nx dx dan ʃ cos mx cos nx dx
contoh:
1. ʃ
sin5 x dx
=
ʃ sin4 x. sin x dx
=
ʃ (sin2x)2. Sin x
dx
=
ʃ ( 1- cos2 x)2 sin x dx
=
ʃ (1-2 cos2 x + cos4 x) sin xdx
=
- ʃ ( 1-2 cos2 x+ cos4x) d ( cos x)
=
-[ ʃ d ( cos x ) -ʃ 2 cos2x d (cos x) +nʃ cos4 x d(cos x)
=
- [ cos x – 2 (1/3 cos 3x)+ 1/5 cos 5x
=
- cos x +2/3 cos3x – 1/5 cos5 x+c
bentuk 2 :
ʃ sinm x
cosn x dx
a. m
atau n ganjil
= ʃ
sin3 x cos-4 x dx
= ʃ
sin2 x sinx . cos-4 x dx
= ʃ ( 1- cos2 x ). Cos.
-4 x sin x dx
= -ʃ ( cos-4 x- cos-2
x )d ( cos x)
= - [ ʃ ( cos-4 x d ( cos x) - ʃ ( cos-2 x d ( cos x) -]
= -
[ - 1/3 cos-3 x – ( - cos-1 x )]
=1/3
cos-3 x – cos-1 x+
c
=
1/3 ( 1/ cos3x) – ( 1/ cos x) +c
=
1/3 sec3x- sec x+c
Bentuk yang ketiga
ʃ tann x dx dan ʃ cotn x dx
tan2 x = sec2 x
- 1
cot2 x = csc2 x
- 1
contoh:
ʃ cot4 x dx = ʃ
(cot2 x . cot2 x ) dx
= ʃ
cot2 x ( csc2 x – 1 ) dx
= ʃ
(cot2 x . csc2 x- cot2 x ) dx
= ʃ (cot2
x . csc2 x)
- ʃ
cot2 x dx
= ʃ (cot2
x . csc2 x
- ʃ
(csc2 x - 1) dx
= ʃ cot2
x d ( - cot x )
- ʃ ( csc2 x – 1 ) dx
= - ʃ
cot2 x d ( cot x ) -
ʃ csc2 x dx - ʃ dx
= - 1/3 cot3x – ( - cot x) –
x+c
= - 1/3 cot3x + cot x – x+ c
Bentuk yang keempat
ʃ tanm x secn
x dx, ʃ cotm x cscn
x dx
tan2 x = sec2 x
- 1
sec2 x = tan2 x
+1
cot2 x = csc2 x
- 1
Contoh
a. m
sembarang dan n genap
ʃ
tan-3/2 x . csc4 x
dx
= ʃ
tan-3/2 x ( sec2
x) sec2 x )dx
= ʃ
tan-3/2 x ( tan2
x + 1) sec2 x dx
= ʃ (( tan1/2 x
sec2 x ) + tan-3/2
x sec2 x ))
= ʃ
tan1/2 x d ( tan x) + ʃ tan-3/2 x d (tan x)
= 2/3 tan3/2 x + (-2 tan
-1/2 x) + c
= 2/3 tan3/2 x – 2 tan-1/2 + c
Tidak ada komentar:
Posting Komentar