Kamis, 24 Maret 2016

Integral Parsial

Integral Parsial
Andaikan  U= ( X ) dan V = ( x )
Maka Dx [ u (x ).v (x)] =  u (x).v1(x) + v (x).u1(x)
ʃ Dx [u(x).v(x)] =ʃ u(x).v1(x) + ʃ v(x).u1 (x)
u(x).v(x)= ʃ u(x). v1(x) + v(x).u1(x)
ʃ u(x).v1(x) = u(x).v(x) - ʃ v(x).u1(x)
dv = v1(x)        u = diturunkan
du = u1(x)        v = diintegralkan
ʃ u(x) dv = u(x). v(x) - ʃ v(x)du
ʃ u dv = u.v - ʃ v du
contoh :
1.      ʃ x/v sin x/ dv dx
penyelesaian:
u = x
·         du/ dx = 1
·         Du = dx
Dv = sin x dx
Dv/dx= sin x
V = ʃ sin x dx
V= - cos x
 = ʃ u dv = u.v - ʃ v du
= ʃ u dv = x (- cos x ) - ʃ ( - cos x ) dx
= - x cos x + sin x + c
2.      ʃ x cos x dx
penyelesaian:
u = x
du = dx
dv= cos x dx
v= sin x
ʃ u dv = u.v - ʃ v du
           = x sin x - ʃ sin x dx
           = x sin x + cos x + c
Pengintegralan parsial untuk integral tentu :
ʃba  u dv = u.v ]ba - ʃba v du
contoh :
1.      ʃ1e In x dx
penyelesaian:
u = In x
du/dx = 1/x
du = 1/x dx
dv = dx
v = x
ʃe1 In x dx = x In x │e1 - ʃe1 x 1/x dx
              = [ ( e In e) – ( 1 In 1 )] - ʃe1 dx
              =[ e In e – (1 In 1 ) ] -  [x│e1]
              = [ e In e – e ] – [ 1 In 1- 1]
              = [e (1) – e ] – [ 1.0.-1]
              = 0- (-1) = 1
Integral parsial berulang
Contoh
 ʃ x2/0  sin x/dx dx
u = x2 du/dx= 2x
du = 2x dx
dx = sin x
v = - cos x
ʃ x2 sin x = x2 9 – cos x) - ʃ - cos x. 2x dx
            = - x2 cos x + 2 ʃ cos x xdx
            = - x2 cos x + 2ʃ x cos x dx
            = - x2 cos x + 2 ( x sin x + cos x)
            = - x2 cos x + 2 x sin x + 2 cos x + c
Integral Trigonometri
ʃ cos (ax + b) = 1/a sin (ax +b)
ʃ cos ( 5x+3) = 1/5 sin ( 5x +3)
Ada 5 bentuk trignometri:
1.      ʃ sinn x dx dan ʃ cosn x dx
2.      ʃ sinn x cosn xdx
3.      ʃ tann x dx dan ʃ cotn xdx
4.      ʃ tanmx secn xdx dan ʃ cotm x cscn x dx
5.      ʃ sin mx cos nx dx, ʃ sin mx sin nx dx dan ʃ cos mx cos nx dx
contoh:
1.      ʃ sin5 x dx
= ʃ sin4 x. sin x dx
= ʃ (sin2x)2.  Sin x dx
= ʃ ( 1- cos2 x)2 sin x dx
= ʃ (1-2 cos2 x + cos4 x) sin xdx
= - ʃ ( 1-2 cos2 x+ cos4x) d ( cos x)
= -[ ʃ d ( cos x ) -ʃ 2 cos2x d (cos x) +nʃ cos4 x d(cos x)
= - [ cos x – 2 (1/3 cos 3x)+ 1/5 cos 5x
= - cos x +2/3 cos3x – 1/5 cos5 x+c
bentuk 2 :
ʃ  sinm x cosn x dx
a.       m atau n ganjil
= ʃ  sin3 x cos-4 x dx
= ʃ  sin2 x sinx . cos-4  x dx
= ʃ ( 1- cos2 x ). Cos. -4  x sin x dx
= -ʃ ( cos-4 x- cos-2 x )d  ( cos x)
= - [ ʃ ( cos-4 x d  ( cos x) - ʃ ( cos-2 x d  ( cos x) -]
            = - [ - 1/3 cos-3 x – ( - cos-1 x )]
            =1/3 cos-3   x – cos-1 x+ c
            = 1/3 ( 1/ cos3x) – ( 1/ cos x) +c
            = 1/3 sec3x- sec x+c  
Bentuk yang ketiga
ʃ tann x dx  dan ʃ cotn x dx 
tan2 x = sec2 x - 1
cot2 x = csc2 x - 1
contoh:
ʃ cot4 x dx  = ʃ  (cot2  x . cot2  x ) dx
                 = ʃ  cot2  x ( csc2  x – 1 ) dx
                 = ʃ  (cot2  x . csc2  x- cot2 x ) dx
                 =  ʃ  (cot2  x . csc2  x) -  ʃ  cot2 x dx
                 =  ʃ  (cot2  x . csc2  x -  ʃ  (csc2 x - 1) dx
                 =  ʃ  cot2  x d ( - cot  x ) -  ʃ ( csc2 x – 1 ) dx
                 = - ʃ  cot2  x d ( cot  x ) -  ʃ csc2 x dx -  ʃ dx
                 = - 1/3 cot3x – ( - cot x) – x+c
                 = - 1/3 cot3x + cot x – x+ c
Bentuk yang keempat
ʃ tanm x secn x dx,  ʃ cotm x cscn x dx
 
tan2 x = sec2 x - 1
sec2 x = tan2 x +1
cot2 x = csc2 x - 1
Contoh
a.       m sembarang dan n genap
ʃ  tan-3/2  x . csc4  x  dx
     = ʃ  tan-3/2  x ( sec2 x) sec2 x )dx
     = ʃ  tan-3/2  x ( tan2 x + 1) sec2 x dx
     = ʃ (( tan1/2  x  sec2 x )  + tan-3/2 x  sec2 x ))
     = ʃ  tan1/2  x d ( tan x)  + ʃ tan-3/2 x d (tan x)
     = 2/3 tan3/2 x + (-2 tan -1/2  x) + c
      = 2/3 tan3/2 x – 2 tan-1/2   + c

Tidak ada komentar:

Posting Komentar